Pages

jeudi 15 octobre 2020

Un carré est-il un rectangle ? ... Aaargh !

 

 
Il y a une dizaine de jours, en « feuilletant » Twitter, je suis tombé sur cette question d’une collègue qui se désespérait de ne pas réussir à convaincre ses élèves que oui, un carré est un rectangle. Et qui lançait un appel à l’aide : quelqu’un aurait-il l’idée de manipulations matérielles qui lui permettraient d’y arriver.

 Et là, je ne suis pas d’accord avec ma collègue (dont par ailleurs j’apprécie les interventions) : des manipulations, il y en a… ou plus exactement il y en aurait plein – et j’y reviendrai. Mais en amont de ces éventuelles manipulations il manque une volonté, celle de construire la géométrie au collège.

 Cette volonté manque cruellement dans les programmes. Bon, j’ai déjà largement eu l’occasion de gémir là-dessus dans un article d’Images des mathématiques – Collèges : veut-on mettre la géométrie à la poubelle ? – alors je ne vais pas recommencer ici, mais ce laxisme officiel a malheureusement un effet pernicieux sur les professeurs eux-mêmes : si leur hiérarchie leur fait clairement comprendre qu’ils peuvent (doivent ?) se contenter d’appliquer la géométrie à quelques situations bien convenues, pourquoi voulez-vous qu’ils en fassent plus ?

 Il est invraisemblable que la majorité des élèves de collège puisse encore confondre longueur et aire (parce qu’ils confondent ligne et surface) et de nombreux collègues s’en exaspèrent… peut-être parce qu’il s’agit d’une de ces situations convenues commentées par leur hiérarchie.

 Il est tout aussi invraisemblable qu’une majorité d’élèves se demande encore si un carré est un rectangle, mais là, les collègues qui s’en exaspèrent sont bien plus rares. J’ai même eu des commentaires de personnes qui trouvaient cette question légitime, voire même qui « estimaient » qu’un carré n’était pas un rectangle.

 Et pourtant, est-ce qu’un professeur cesse d’être un être humain ? Euh, au vu des réactions de certains élèves, la question est peut-être mal choisie, alors :
est-ce qu’un chat noir cesse d’être un chat ? Bon, oui, dans certains manuels de sorcellerie, mais dans la réalité ?

 Toute cette polémique a pour origine l’ignorance d’un des principes de la logique qui nous est habituelle : un objet (au sens large, êtres vivants compris) auquel on découvre une nouvelle propriété ne cesse pas d’être ce qu’il était avant cette découverte.

 Plus « scientifiquement » : si parmi les objets d’une catégorie A, on découvre à certains une caractéristique supplémentaire par rapport aux autres, ces objets seront toujours des A… peut-être, s’ils sont suffisamment intéressants ou nombreux les appellera-t-on des A+ ou des A-B. Peut-être même s’ils sont suffisamment exceptionnels finira-t-on par les appeler simplement des B, mais toutes les personnes instruites sauront que ces B sont des cas particuliers de A !

 « Ignorance »… « instruites »… rappelez-moi : quel est le but de notre système d’éducation ?

Rappelez-moi encore : quel paragraphe, quelle ligne, quel mot des programmes officiels incite les professeurs de mathématiques à – oh non pas construire, mais tout au moins ébaucher une arborescence de notre géométrie ? Je ne parle même pas d’en introduire les éléments dans un ordre logique plutôt que de les jeter en vrac et en pâture à un public captif.

 Bon, je ne vais pas rêver : ma voix ne portera pas bien loin.

 Mais je peux au moins proposer quelques éléments de réponse, quelques manipulations plus ou moins matérielles à ma collègue désespérée – ne serait-ce que parce que critiquer sans rien proposer… non, vraiment non !

 Je dois toutefois vous en avertir : ça va vous prendre du temps ! Mais après tout, du temps j’en ai bien pris, moi, pour vous préparer tout ça, pour le mettre en forme, alors… pourquoi pas ?

 Pour commencer, je vous propose de lire les feuilles de cours que je distribuais à mes élèves, il y a encore 5 ans :

cours-5-Parallelogrammes.pdf

(oui évidemment, vous pouvez les imprimer, elles sont à votre disposition)

 Ensuite, et ça, ça ne prendra pas longtemps du tout, voici (également à votre disposition) l’introduction aux quadrilatères dans «… donc, d’après… » – et surtout une arborescence qui pourrait être à l’origine de nombreuses manipulations : par exemple en créant une version « muette » de cette arborescence (c’est-à-dire une version dans laquelle les noms des objets seraient remplacés par LA propriété qui les caractérise par rapport à leur ascendant direct), en projetant cette version muette sur un tableau blanc puis en faisant tirer à un élève une carte parmi un jeu de cartes contenant les noms de toutes les figures planes au programme et en lui demandant de suivre le chemin correspondant sur l’arborescence. Il – ou elle – pourrait même gagner des points en avançant dans sa progression… ou tout perdre en voulant aller trop loin ou en se trompant de chemin :

 http://donc-dapres.com/ebauches/textes/P3-intro-arborescence.pdf

 Enfin, mais là il faudrait vraiment que vous ayez une vingtaine de minutes à perdre, vous pourriez regarder la vidéo présentée dans le lien suivant, une version imprimée de l’arborescence à la main : vous y découvririez (à partir de la marque 4 minutes 40) un autre type de manipulation… et une utilisation bien peu conventionnelle d’un compas et d’une règle 😊.

(Pour la petite histoire, c’est réellement par cette manipulation que je présentais l’arborescence des parallélogrammes à mes élèves de cinquième !)

 https://mathemagique-com.blogspot.com/2015/02/vous-avez-dit-parallelogrammes.html

 Ah oui, j’allais oublier : l’accès aux versions numériques de «… donc, d’après… » et du tome 1 du « cours de mathématiques du cycle quatre » reste gratuit jusqu’à la fin de la pandémie… alors n’hésitez pas :

                               Donc d’après                         Cours de mathématiques, tome 1


Merci de votre fidélité à ce blog,

Philippe Colliard

Aucun commentaire:

Enregistrer un commentaire

La parole est à vous :)